1. Convert the following quantities into SI units and also give your answer in standard form.

Quantity	Quantity in SI unit and standard form.
18 mm	$18 \times 10^{-3} = 1.80 \times 10^{-2} \text{m} = 0.018 \text{m}$
19 cm	$19 \times 10^{-2} = 1.90 \times 10^{-1} \text{m} = 0.19 \text{m}$
9 g	$9 \div 10^3$ = $9.00 \times 10^{-3} \text{kg}$ = 0.009kg
30 mg	$30 \times \frac{10^{-3}}{10^{3}} = 3.00 \times 10^{-5} \text{ kg} = 0.00003 \text{ kg}$
53 min	$53 \times 60 = 3.18 \times 10^3 \text{ s} = 3180 \text{ s}$
304 mA	$304 \times 10^{-3} = 3.04 \times 10^{-1} A = 0.304 A$
29 mV	29×10^{-3} = $2.90 \times 10^{-2} \text{V}$ = 0.029 V
166 ms	$166 \times 10^{-3} = 1.66 \times 10^{-1} \text{s} = 0.166 \text{ s}$
34 μm	34×10^{-6} = $3.40 \times 10^{-5} \text{m}$ = 0.000034m
300 nm	300×10^{-9} = 3.00×10^{-7} m = 0.0000003 m
800 MW	$800 \times 10^6 = 8.00 \times 10^8 \text{ W} = 80000000 \text{ W}$
45 GW	45×10^9 = $4.50 \times 10^{10} \text{W}$ = 45000000000W
142 cm ²	$142 \times (10^{-2})^2 = 1.42 \times 10^{-2} \ m^2 = 0.0142 \ m^2$
6000 cm ³	$6000 \times (10^{-2})^3 = 6.00 \times 10^{-3} m^3 = 0.006 m^3$
94 mm ²	$94 \times (10^{-3})^2 = 9.40 \times 10^{-5} m^2 = 0.000094 m^2$
399 mm ³	$399 \times (10^{-3})^3 = 3.99 \times 10^{-7} m^3 = 0.000000399 m^3$
800 mm ⁻³	$800(10^{-3})^{-3} = 8.00 \times 10^{11} m^{-3} = 8000 000 000 000 m^{-3}$

- 2. In an experiment to determine the density of a liquid, 100 g of the liquid has a volume of 80 cm³.
 - (a) what is the density of the liquid in $g cm^{-3}$

solution

Density
$$(\rho) = \frac{m}{V} = \frac{100}{80} = 1.25 \text{ g } cm^{-3}$$

(b) express the density in kg m⁻³

Density (
$$\rho$$
) = 1.25 g cm⁻³ = 1.25 x 1000 = 1.25 x 10³ kg m^{-3}

3. A metal sphere has a radius of 3.0 mm and a mass of 0.96 g, calculate the volume of the sphere and determine the density of the metal.

Solution

Volume (sphere) =
$$\frac{4}{3} \pi r^3 = \frac{4}{3} \pi 0.003^3 = 1.13 \times 10^{-7} m^3$$

Density
$$(\rho) = \frac{m}{V} = \frac{0.96 \div 10^3}{1.13 \times 10^{-7}} = 8.50 \times 10^3 \text{ kg } m^{-3}$$

4. The diameter of a copper wire is 0.72 mm. Calculate the cross-sectional area of the wire.

Solution

$$A = \frac{\pi d^2}{4} = \frac{(\pi \times 0.72 \times 10^{-3})^2}{4} = 4.07 \times 10^{-7} \ m^2$$

5. A student takes the following three measurements of the diameter in mm of a ball bearing.

Which one of the following should be stated as the average result?

- A. 4.2 mm
- **B.** 4.20 mm

- **C.** 4.207 mm
- **D.** 4.21 mm

Average diameter =
$$\frac{4.21+4.20+4.21}{3}$$
 = 4.2066 mm = 4.21 mm

- 6. Write the number of significant figures in following values.
 - (a) 2.308 cm 4
 - **(b)** 0.02308 m 4
 - (c) 23.08 mm 4
 - (d) 23080 µm 4
 - **(e)** 3.500 4
 - **(f)** 0.06900

7. Rearrange the following equations

$$E = \frac{1}{2} \text{ m } v^2$$
: : $m = \frac{E \times 2}{v^2}$

$$V = \sqrt{\frac{E \times 2}{m}}$$

1. $F = 6 \pi \eta r v$ (F= frictional force, η =coefficient of viscosity, r=radius, v= velocity)

$$\eta = \frac{F}{6\pi r v}$$

2.
$$v = u + at$$

$$a = \frac{v - u}{a}$$

$$t = \frac{v - u}{a}$$

3. $V = \frac{4}{3} \pi r^3$ (V=volume)

$$r = \sqrt[3]{\frac{3V}{4\pi}}$$

4.
$$s = ut + \frac{1}{2} a t^2$$

$$u = \frac{s - \frac{1}{2}at^2}{t}$$

$$a = \frac{s - (ut)}{\frac{1}{2}t^2}$$

$$t = \sqrt{\frac{s - (ut)}{\frac{1}{2}a}}$$

5. $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

$$v_2 = \frac{m_1 u_1 + m_2 u_2 - m_1 v_1}{m_2}$$

6. T = $2\pi \sqrt{\frac{l}{g}}$ (T=time period, l=length, g= acceleration due to gravity)

square on both sides

$$(T)^2 = (2\pi \sqrt{\frac{l}{g}})^2$$

$$T^2 = 4 \pi^2 \frac{l}{a} : /= \frac{T^2 \times g}{4 \pi^2}$$

8. Simplify the following using to rules of indices

8. #	Simplify the following using to Unit substituted in term	Simplified version
1.	$kg m s^{-1}$	$kg m s^{-2} kg (1)$
1.	<u>s</u>	m (1)
2	$kg m s^{-2} s$	
2	ng m s	
		m (1)
2	$kg (m s^{-1})^2$	s (-2+1)
3	m	$kg \ m \ s^{-2}$ $kg (1)$
		m (2-1)
4	$kg m s^{-2}m^2$	s (-2)
4	$\frac{Rg \text{m } s - m}{A s A s}$	$kg m^3 s^{-4} A^{-2}$ $kg (1)$
	22.5.2.5	m (1+2)
		s (-2-1-1)
-	kg m s ⁻²	A (-1-1)
5	A s	$kg m s^{-3} A^{-1}$ $kg (1)$
		m(1)
		s (-2-1)
6	$kg m^2 s^{-2}$	A (-1)
6	$\frac{\text{Kg } m \text{ S}}{\text{A s m}}$	$kg \ m \ s^{-3} \ A^{-1}$ $kg (1)$
	110 111	m (2-1)
		s (-2-1)
-		A (-1)
7	m^3	$\sqrt{s^2} = s \qquad \text{kg (1-1)}$
	$\sqrt{kg^{-1} m^3 s^{-2} kg}$	m (3-3)
	m	s (2)
8	$\sqrt{\frac{m}{m s^{-2}}}$	$\sqrt{s^2} = s \qquad \qquad m (1-1)$
	· · · · · · · · · · · · · · · · · · ·	s (2)
9	$kg^{-1} m^3 s^{-2} kg$	$\sqrt{m^2 s^{-2}} = m s^{-1}$ kg (-1+1)
	\sqrt{m}	m (3-1)
10		$s (-2)$ $\sqrt{s^2} = s \qquad \text{kg (1-1)}$
10	$\sqrt{\frac{kg m}{kg m s^{-2}}}$	
	$\sqrt{\text{kg m } s^{-2}}$	m (1-1)
		s (2)
11	$kg m s^{-2}$	$\sqrt{m^2 s^{-2}} = m s^{-1}$ kg (1-1)
	$\sqrt{\frac{\text{kg m } s^{-2}}{kg m^{-1}}}$	m (1+1)
	`	s (-2)
12	$\frac{(kg \ m^{-1})^2}{k}$	kg m^{-2} kg (2-1)
	kg	m (-2)
13	$kg^{-1} m^3 s^{-2} kg$	$m \ s^{-2}$ kg (-1+1)
	m ²	m (3-2)
		s (-2)
14	$\left(\frac{\text{kg } m^2 s^{-2}}{s^{-1}}\right)$	kg s^{-1} kg (1)
	$\frac{1}{m^2}$	m (2-2)
		s (-2+1)