Standard units in Physics

Text Book Pages: 4 to 7

Physical quantities

- ✓ A physical quantity is a physical property that can be measured quantitatively (in numbers).
 Eg: mass, pressure, density, temperature and forces
- ✓ Measurement of any physical quantity involves comparison with a certain basic internationally accepted reference standard called unit. The result of a measurement of a physical quantity is expressed by a **number** (or numerical measure) accompanied by a **unit**.

Example: Distance = 25m

Physical Quantity Magnitude (size) Unit

✓ Physical quantities are classified as either Base quantities (fundamental quantity)
or Derived quantities.

Base quantities

- ✓ The starting quantities of any system are known as base quantities and they cannot be expressed in terms of other physical quantities.
- ✓ Units of Base quantities are called Base units or SI units.
- ✓ There are seven base quantities.

Base Quantity	Unit name	Unit symbol
mass	kilogram	Kg
time	second	S
length	metre	m
temperature	kelvin	K
electric current	ampere	А
amount of substance	mole	mol
light intensity	candela	cd

- ✓ To deal with the Advanced Level physics tests, you only need to memorize the six highlighted base quantities and units.
- ✓ When scientists do research, they must communicate the results of their experiments with each other and agree on a system of units for their measurements.
- ✓ This system of units is called the International System of Units (French: System International d'unités, SI). ie, SI Units.
- ✓ If the physical quantity is not in SI unit, it can be converted to SI unit.

Derived Quantities

- ✓ Physical quantities other than the base quantities are called derived quantities.
- ✓ Derived quantities are obtained from a combination of various base quantities.

Speeds are typically expressed in units of meters per second m/s which will now be written as ms-1

- ✓ Some derived units may be given specific name such as *newton* (*Force*) and *joule* (*Work*).
- ✓ Derived quantity units can be worked out using defining word equations.

Derived Quantity	derived unit name (symbol)	Defining word equation	base unit equivalents	other unit
acceleration	-	$acceleration = \frac{velocity}{time} = \frac{ms^{-1}}{s}$	ms^{-2}	-
area	-	$area = length \times length = m \times m$	m^2	-
volume	-	$area = length \times length \times length$ = $m \times m \times m$	m^3	-
density	-	$density = \frac{mass}{volume} = \frac{kg}{m^3}$	kgm^{-3}	
pressure	pascal (pa)	$pressure = \frac{force}{area} = \frac{mass \times acceleration}{area}$ $= \frac{kgms^{-2}}{m^{2-1}}$	$kgm^{-1}s^{-2}$	$N m^{-2}$
momentum	-	$momentum = mass \times velocity$ $= kg \times ms^{-1}$	kgms ^{−1}	
force, weight newton (N) $force = mass \times acceleration \\ = kg \times ms^{-2}$		kgms⁻²	-	
moments	-	$moments = force \times distance$ = $kgms^{-2} \times m$	kgm^2s^{-2}	N m
energy / work done	ioule (J)		kgm^2s^{-2}	N m
power	power $watt (W)$ $power = \frac{work \ done}{time} = \frac{kgm^2s^{-2}}{s}$		kgm^2s^{-3}	$J s^{-1}$
frequency	frequency hertz (Hz) $frequency = \frac{1}{time} = \frac{1}{s}$		s^{-1}	-
electric charge	coulomb (C)	$charge = current \times time = A \times s$	A s	-
voltage / emf	volt (V)	$voltage = \frac{energy}{charge} = \frac{kgm^2s^{-2}}{As}$	$kgm^2s^{-3}A^{-1}$	JC^{-1}
resistance	ohm (Ω)	$resistance = \frac{voltage}{current} = \frac{kgm^2s^{-3}A^{-1}}{A}$	$kgm^2s^{-3}A^{-2}$	VA^{-1}

Power prefixes

 \checkmark Power Prefixes are used for multiples or sub multiples of the units.

This is to avoid too many zeroes which may give rise to human error.

factor	prefix	symbol
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10-2	centi	С
10 ⁻³	milli	М
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р

Significant Figures

(digits in a number that are reliable and absolutely necessary to indicate the quantity of that number)

✓ All the non-zero digits are significant.

Eg: 98765 has 5 significant figures

✓ Zeros between two non-zero digits are significant

Eg: 120586 has 6 significant figures

✓ Zeros that come before all non-zero digits are not significant

Eg: 0.002308 has 4 significant figures

 \checkmark Zeros after non-zero digits within a number without decimals are ${f not}$ significant

Eg: 123000 has 3 significant figures

✓ Zeros after non-zero digits within a number with decimals are significant The terminal zero(s) in a number with a decimal point are significant.

Eg: 3.500 has 4 significant figures
0.06900 has 4 significant figures
689.0023 has 7 significant figures

Order of magnitude (Scientific Notation / Standard form / Exponential form)

- ✓ An estimate of *size* or *magnitude* expressed as a *power of ten*.
- ✓ In this notation, every number is expressed as $\mathbf{a} \times \mathbf{10}^{b}$, where \mathbf{a} is a number between 1 and 10, and \mathbf{b} is any positive or negative power of 10.
- ✓ In this method, the decimal is written after the first digit,
 - ➤ The diameter of the Earth is 1.28×10⁷m
 - ➤ The diameter of Hydrogen atom is 1.06 ×10⁻¹⁰ m

Working with indices

Exponent Rules For $a \neq 0, b \neq 0$				
Product Rule	$a^x \times a^y = a^{x+y}$			
Quotient Rule	$a^x \div a^y = a^{x-y}$			
Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$			
Power of a Product Rule	$(ab)^x = a^x b^x$			
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$			
Zero Exponent	$a^{0} = 1$			
Negative Exponent	$a^{-x} = \frac{1}{a^x}$			
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$			

Practice Questions:

1.	Which	of these	units is	the same	as the	newton?
	_					

C. kg
$$m^2$$
 s⁻²

D.
$$kg m^2 s^{-3}$$

B.
$$kg m^2 s^{-2}$$

C.
$$kg m^2 s^{-3}$$

D.
$$kg^2 m^2 s^{-3}$$

B.
$$kg m s^{-2}$$

D.
$$kg m^{-2} s^{-2}$$

6.	6.Which of these quantities is not measured in an SI base unit?							
	A. Dista	nce	B. for	ce	C. mass	D. time		
7.	7. Which of the following is a derived SI unit?							
	A. joule B. metre		C. power	D. time				
0		fulsa fallai.a	. : J	ani and CT an analis of				
8.	3. Which of the following is a derived SI quantity?				C. second	D. watt		
	A. force		B. len	gtri	C. Second	D. watt		
9.	Which o	f the following	g is a co	orrect statement?				
	A. Weig	ht is a base qu	uantity.	•	_	B. Velocity is a base quantity.		
	C. Mass	is a derived q	uantity	<i>/</i> .	D. Force is a deriv	ed quantity.		
10	.Which o	f the following	g is equ	ivalent to the joule	e in terms of SI base	units?		
	A. kg m²	$^{2} \mathrm{s}^{-3}$	B. kg ı	m ² s ⁻²	C. kg m s ⁻²	D. kg m s ⁻¹		
11	Select tl	he row of the	tahle th	nat shows the corre	ect ST hase units for	force and work done.		
	.561666 61	Force		Work done		Torice dilla Work dolle.		
	Α.	kg m ² s ⁻²		kg m ³ s ⁻²	_			
	В.	kg m s ⁻²		kg m ² s ⁻²	_			
	C.	kg m ² s ⁻²		kg m s ⁻²	1			
	D.	kg m s ⁻²		$kg m^3 s^{-2}$	1			
1 2	\\/\la: ala_a	f the fellowin	- CT	:t	∟ مارستان مارستان مارستا	1:12		
12.Which of the following SI units can only be used					a with a scaiar quan C. m s ⁻¹	-		
	A. m		B. s		C. m s -	D. m s ⁻²		
13	.Which o	f the following	g is the	unit of upthrust?				
	A. N m ⁻²		B. N n	n ⁻¹	C. N m	D. N		
14. Which of the following SI units is only used with a vector quantity?								
	A. s		B. m ³		C. ms ⁻¹	D. ms ⁻²		
15	.The unit	for power is	the wat	tt. Which of the fol	lowing is equivalent	to the watt?		
	A. Kg m	s ⁻²	B. kg	$m^2 s^{-2}$	C. kg m s ⁻³	D. kg m² s ⁻³		
16.The newton can be written in base units as								
A. kg m B. kg m s ⁻¹		m s ⁻¹	C. kg m s ⁻²	D . $kg m^2 s^{-2}$				
17	.Which o	f the following	g quant	ities could have ur	nits of N m s ⁻¹ ?			
A. gravitational field strength				B. gravitational potential energy				
C. Power			D. work done					