Chapter 1

Algebraic Expressions

Exercise 1A

SKILLS INTERPRETATION

1 Simplify these expressions:

$$\mathbf{a} \quad x^3 \times x^4$$

b
$$2x^3 \times 3x^2$$

$$\frac{k^3}{k^2}$$

$$\mathbf{d} \ \frac{4p^3}{2p}$$

e
$$\frac{3x^3}{3x^2}$$

$$f(y^2)^5$$

g
$$10x^5 \div 2x^3$$

h
$$(p^3)^2 \div p^4$$

i
$$(2a^3)^2 \div 2a^3$$

j
$$8p^4 \div 4p^3$$

$$\mathbf{k} \ 2a^4 \times 3a^5$$

$$1 \frac{21a^3b^7}{7ab^4}$$

$$\mathbf{m} \ 9x^2 \times 3(x^2)^3$$

$$\mathbf{n} \ \ 3x^3 \times 2x^2 \times 4x^6$$

o
$$7a^4 \times (3a^4)^2$$

$$\mathbf{p} \ (4y^3)^3 \div 2y^3$$

q
$$2a^3 \div 3a^2 \times 6a^5$$

$$r 3a^4 \times 2a^5 \times a^3$$

2 Expand and simplify if possible:

a
$$9(x-2)$$

b
$$x(x + 9)$$

$$e^{-3y(4-3y)}$$

d
$$x(y + 5)$$

$$e -x(3x + 5)$$

$$f -5x(4x + 1)$$

$$g(4x + 5)x$$

$$h -3v(5-2v^2)$$

h
$$-3y(5-2y^2)$$
 i $-2x(5x-4)$

j
$$(3x - 5)x^2$$

k
$$3(x+2) + (x-7)$$
 l $5x-6-(3x-2)$

1
$$5x - 6 - (3x - 2)$$

$$\mathbf{m} \ 4(c+3d^2) - 3(2c+d^2)$$

$$\mathbf{m} \ 4(c+3d^2) - 3(2c+d^2)$$
 $\mathbf{n} \ (r^2+3t^2+9) - (2r^2+3t^2-4)$

o
$$x(3x^2 - 2x + 5)$$

$$\mathbf{p} \ 7y^2(2-5y+3y^2)$$

o
$$x(3x^2 - 2x + 5)$$
 p $7y^2(2 - 5y + 3y^2)$ **q** $-2y^2(5 - 7y + 3y^2)$

r
$$7(x-2) + 3(x+4) - 6(x-2)$$

$$5x - 3(4 - 2x) + 6$$

$$t 3x^2 - x(3-4x) + 7$$

u
$$4x(x+3) - 2x(3x-7)$$

t
$$3x^2 - x(3-4x) + 7$$
 u $4x(x+3) - 2x(3x-7)$ v $3x^2(2x+1) - 5x^2(3x-4)$

3 Simplify these fractions:

a
$$\frac{6x^4 + 10x^6}{2x}$$

b
$$\frac{3x^5 - x^7}{x}$$

$$c \frac{2x^4 - 4x^2}{4x}$$

d
$$\frac{8x^3 + 5x}{2x}$$

e
$$\frac{7x^7 + 5x^2}{5x}$$

$$f = \frac{9x^5 - 5x^3}{3x}$$

1 Expand and simplify if possible:

a
$$(x+4)(x+7)$$

d
$$(x-y)(2x+3)$$

$$g(2x-3)(x-4)$$

$$i(x+5)(2x+3y-5)$$

$$m(x+2y-1)(x+3)$$

$$p (4y + 5)(3x - y + 2)$$

b
$$(x-3)(x+2)$$
 c $(x-2)^2$

e
$$(x + 3v)(4x - v)$$

h
$$(3x + 2y)^2$$

$$k(x-1)(3x-4y-5)$$

$$(2x+2y+3)(x+6)$$

q
$$(5y-2x+3)(x-4)$$
 r $(4y-x-2)(5-y)$

$$(x-2)^2$$

e
$$(x+3y)(4x-y)$$
 f $(2x-4y)(3x+y)$

i
$$(2x + 8y)(2x + 3)$$

j
$$(2x+3)(x-4)$$

i $(3x+2y)$
j $(x+5)(2x+3y-5)$
k $(x-1)(3x-4y-5)$
l $(x-4y)(2x+y+5)$
m $(x+2y-1)(x+3)$
n $(2x+2y+3)(x+6)$
o $(4-y)(4y-x+3)$

o
$$(4-v)(4v-x+3)$$

2 Expand and simplify if possible:

a
$$5(x+1)(x-4)$$

d x(x-y)(x+y)

y(3x-2y)(4x+2)

 $\mathbf{i} \quad x(x+2)(x+3y-4)$ m x(2x + 3)(x + y - 5)

b
$$7(x-2)(2x+5)$$

$$(\lambda - 2)(2\lambda + 3)$$

e
$$x(2x+y)(3x+4$$

h
$$y(7-x)(2x-5)$$
 i $x(2x+y)(5x-2)$

k
$$y(2x + y - 1)(x + 5)$$
 l $y(3x + 2y - 3)(2x + 1)$

$$2x(3x-1)(4x-y-1)$$

$$\mathbf{p}(x+3)(x+2)(x+1)$$
 $\mathbf{q}(x+2)(x-4)(x+3)$ $\mathbf{r}(x+3)(x-1)(x-5)$

$$(x-5)(x-4)(x-3)$$

$$\mathbf{v} (3x-2)(2x+1)(3x-2)$$

b
$$7(x-2)(2x+5)$$

e
$$x(2x+y)(3x+4)$$

$$\mathbf{k} \ v(2x+v-1)(x+3)$$

n
$$2x(3x-1)(4x-y-3)$$
 o $3x(x-2y)(2x+3y+5)$

$$q(x+2)(x-4)(x+3)$$

s
$$(x-5)(x-4)(x-3)$$
 t $(2x+1)(x-2)(x+1)$

$$\mathbf{w} \ (x+y)(x-y)(x-1)$$

c
$$3(x-3)(x-3)$$

f
$$y(x-5)(x+1)$$

$$1 \quad x(2x+y)(5x-2)$$

$$r (x+3)(x-1)(x-5)$$

$$\mathbf{u} (2x+3)(3x-1)(x+2)$$

$$x (2x - 3y)^3$$

(P) 3 The diagram shows a rectangle with a square cut out. The rectangle has length 3x - y + 4 and width x + 7. The square has side length x - 2. Find an expanded and simplified expression for the area shaded green.

Problem-solving

Use the same strategy as you would use if the lengths were given as numbers:

- (P) 4 A cuboid has dimensions (x + 2) cm, (2x 1) cm and (2x + 3) cm. Show that the volume of the cuboid is $(4x^3 + 12x^2 + 5x - 6)$ cm³.
- **E/P)** 5 Given that $(2x + 5y)(3x y)(2x + y) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are **constants**, find the values of a, b, c and d. (2 marks)

Challenge

Expand and simplify $(x + y)^4$.

1 Factorise these expressions completely:

a
$$4x + 8$$

d
$$2x^2 + 4$$

g
$$x^2 - 7x$$

i
$$6x^2 - 2x$$

$$m x^2 + 2x$$

p
$$5v^2 - 20v$$

s
$$5x^2 - 25xy$$

$$v 12x^2 - 30$$

b
$$6x - 24$$

e
$$4x^2 + 20$$

h
$$2x^2 + 4x$$

$$k 10v^2 - 5v$$

n
$$3y^2 + 2y$$

$$9xy^2 + 12x^2y$$

$$t 12x^2y + 8xy^2$$

$$\mathbf{w} xy^2 - x^2y$$

c
$$20x + 15$$

$$f 6x^2 - 18x$$

i
$$3x^2 - x$$

1
$$35x^2 - 28x$$

o
$$4x^2 + 12x$$

u
$$15y - 20yz^2$$

$$x 12y^2 - 4yx$$

2 Factorise:

a
$$x^2 + 4x$$

d
$$x^2 + 8x + 12$$

$$\mathbf{g} x^2 + 5x + 6$$

i
$$x^2 + x - 20$$

$$m 5x^2 - 16x + 3$$

o
$$2x^2 + 7x - 15$$

$$q x^2 - 4$$

$$4x^2 - 25$$

$$v 2x^2 - 50$$

b
$$2x^2 + 6x$$

$$e^{-}x^2 + 3x - 40$$

h
$$x^2 - 2x - 24$$

$$k 2x^2 + 5x + 2$$

n
$$6x^2 - 8x - 8$$

$$\mathbf{p} \ 2x^4 + 14x^2 + 24$$

$$r x^2 - 49$$

$$t 9x^2 - 25v^2$$

$$\mathbf{w} 6x^2 - 10x + 4$$

c
$$x^2 + 11x + 24$$

$$f x^2 - 8x + 12$$

i
$$x^2 - 3x - 10$$

1
$$3x^2 + 10x - 8$$

Hint For part n, take 2 out as a common factor first. For part **p**, let $v = x^2$.

u
$$36x^2 - 4$$

$$x 15x^2 + 42x - 9$$

3 Factorise completely:

a
$$x^3 + 2x$$

d
$$x^3 - 9x$$

$$\mathbf{g} x^3 - 7x^2 + 6x$$

$$i 2x^3 + 13x^2 + 15x$$

b
$$x^3 - x^2 + x$$

e
$$x^3 - x^2 - 12x$$

h
$$x^3 - 64x$$

$$k x^3 - 4x$$

c
$$x^3 - 5x$$

$$f x^3 + 11x^2 + 30x$$

i
$$2x^3 - 5x^2 - 3x$$

$$1 3x^3 + 27x^2 + 60x$$

E/P) 4 Factorise completely $x^4 - y^4$.

(2 marks)

Problem-solving

Watch out for terms that can be written as a function of a function, for example: $x^4 = (x^2)^2$.

5 Factorise completely $6x^3 + 7x^2 - 5x$. (2 marks)

Challenge

Write $4x^4 - 13x^2 + 9$ as the product of four linear factors.

1 Simplify:

a
$$x^3 \div x^{-2}$$

b
$$x^5 \div x^7$$

c
$$x^{\frac{3}{2}} \times x^{\frac{5}{2}}$$

d
$$(x^2)^{\frac{3}{2}}$$

$$e^{-(\chi^3)^{\frac{5}{3}}}$$

f
$$3x^{0.5} \times 4x^{-0.5}$$

g
$$9x^{\frac{2}{3}} \div 3x^{\frac{1}{6}}$$

h
$$5x^{\frac{7}{5}} \div x^{\frac{2}{5}}$$

i
$$3x^4 \times 2x^{-5}$$

$$\mathbf{j} \quad \sqrt{x} \times \sqrt[3]{x}$$

$$\mathbf{k} \ (\sqrt{x})^3 \times (\sqrt[3]{x})^4$$

$$1 \frac{(\sqrt[3]{x})^2}{\sqrt{x}}$$

2 Evaluate, without using your calculator:

a
$$25^{\frac{1}{2}}$$

b
$$81^{\frac{3}{2}}$$

c
$$27^{\frac{1}{3}}$$

$$d 4^{-2}$$

$$f(-5)^{-3}$$

$$g^{-}(\frac{3}{4})^0$$

$$i \left(\frac{25}{16}\right)^{\frac{3}{2}}$$

$$\mathbf{j} = \left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$k^{(\frac{6}{5})^{-1}}$$

$$\left(\frac{343}{512}\right)^{-\frac{2}{3}}$$

3 Simplify:

a
$$(64x^{10})^{\frac{1}{2}}$$

b
$$\frac{5x^3-2x^2}{x^5}$$

c
$$(125x^{12})^{\frac{1}{3}}$$

c
$$(125x^{12})^{\frac{1}{3}}$$
 d $\frac{x+4x^3}{x^3}$

$$e^{\frac{2x+x^2}{x^4}}$$

$$f \left(\frac{4}{9}x^4\right)^{\frac{3}{2}}$$

$$\mathbf{g} \ \frac{9x^2 - 15x^5}{3x^3} \qquad \qquad \mathbf{h} \ \frac{5x + 3x^2}{15x^3}$$

$$\mathbf{h} \ \frac{5x + 3x^2}{15x^3}$$

b Simplify
$$x(2x^{-\frac{1}{3}})^4$$
.

(E) 5 Given that $y = \frac{1}{8}x^3$, express each of the following in the form kx^n , where k and n are constants.

b
$$\frac{1}{2}y^{-2}$$

(2 marks)

Exercise

SKILLS

PROBLEM-SOLVING

Do not use your calculator for this exercise.

1 Simplify:

d
$$\sqrt{32}$$

$$f^{\frac{\sqrt{12}}{2}}$$

$$g \frac{\sqrt{27}}{3}$$

h
$$\sqrt{20} + \sqrt{80}$$

i
$$\sqrt{200} + \sqrt{18} - \sqrt{72}$$

j
$$\sqrt{175} + \sqrt{63} + 2\sqrt{28}$$

$$k \sqrt{28} - 2\sqrt{63} + \sqrt{7}$$

$$1\sqrt{80} - 2\sqrt{20} + 3\sqrt{45}$$

$$\mathbf{m} \ 3\sqrt{80} - 2\sqrt{20} + 5\sqrt{45}$$

$$n \frac{\sqrt{44}}{\sqrt{11}}$$

o
$$\sqrt{12} + 3\sqrt{48} + \sqrt{75}$$

2 Expand and simplify if possible:

a
$$\sqrt{3}(2+\sqrt{3})$$

b
$$\sqrt{5}(3-\sqrt{3})$$

c
$$\sqrt{2}(4-\sqrt{5})$$

d
$$(2-\sqrt{2})(3+\sqrt{5})$$

e
$$(2-\sqrt{3})(3-\sqrt{7})$$

e
$$(2-\sqrt{3})(3-\sqrt{7})$$
 f $(4+\sqrt{5})(2+\sqrt{5})$

g
$$(5-\sqrt{3})(1-\sqrt{3})$$

h
$$(4+\sqrt{3})(2-\sqrt{3})$$

i
$$(7-\sqrt{11})(2+\sqrt{11})$$

Do not use your calculator for this exercise.

1 Simplify:

a
$$\frac{1}{\sqrt{5}}$$

b
$$\frac{1}{\sqrt{11}}$$
 c $\frac{1}{\sqrt{2}}$

$$c \frac{1}{\sqrt{2}}$$

d
$$\frac{\sqrt{3}}{\sqrt{15}}$$

$$e^{-\sqrt{12}}$$

$$f = \frac{\sqrt{5}}{\sqrt{80}}$$

$$\mathbf{g} \frac{\sqrt{12}}{\sqrt{156}}$$

$$h \frac{\sqrt{7}}{\sqrt{63}}$$

2 Rationalise the denominators and simplify:

$$\mathbf{a} \ \frac{1}{1+\sqrt{3}}$$

b
$$\frac{1}{2+\sqrt{5}}$$

c
$$\frac{1}{3-\sqrt{7}}$$

d
$$\frac{4}{3-\sqrt{5}}$$

a
$$\frac{1}{1+\sqrt{3}}$$
 b $\frac{1}{2+\sqrt{5}}$ **c** $\frac{1}{3-\sqrt{7}}$ **d** $\frac{4}{3-\sqrt{5}}$ **e** $\frac{1}{\sqrt{5}-\sqrt{3}}$

$$f = \frac{3 - \sqrt{2}}{4 - \sqrt{5}}$$

$$\mathbf{g} \ \frac{5}{2+\sqrt{5}}$$

$$h \frac{5\sqrt{2}}{\sqrt{8} - \sqrt{7}}$$

i
$$\frac{11}{3+\sqrt{11}}$$

f
$$\frac{3-\sqrt{2}}{4-\sqrt{5}}$$
 g $\frac{5}{2+\sqrt{5}}$ **h** $\frac{5\sqrt{2}}{\sqrt{8}-\sqrt{7}}$ **i** $\frac{11}{3+\sqrt{11}}$ **j** $\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}$

$$k \frac{\sqrt{17} - \sqrt{11}}{\sqrt{17} + \sqrt{11}}$$

$$\mathbf{k} \frac{\sqrt{17} - \sqrt{11}}{\sqrt{17} + \sqrt{11}} \qquad \qquad \mathbf{l} \frac{\sqrt{41} + \sqrt{29}}{\sqrt{41} - \sqrt{29}} \qquad \qquad \mathbf{m} \frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}}$$

$$\mathbf{m} \frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}}$$

3 Rationalise the denominators and simplify:

a
$$\frac{1}{(3-\sqrt{2})^2}$$

b
$$\frac{1}{(2+\sqrt{5})^2}$$

$$c \frac{4}{(3-\sqrt{2})^2}$$

d
$$\frac{3}{(5+\sqrt{2})^2}$$

e
$$\frac{1}{(5+\sqrt{2})(3-\sqrt{2})}$$

e
$$\frac{1}{(5+\sqrt{2})(3-\sqrt{2})}$$
 f $\frac{2}{(5-\sqrt{3})(2+\sqrt{3})}$

form $p + q\sqrt{5}$, where p and q are rational numbers. (4 marks)

Problem-solving

You can check that your answer is in the correct form by writing down the values of p and q and checking that they are rational numbers

Chapter review

SKILLS

1 Simplify:

$$\mathbf{a} \ y^3 \times y^5$$

a
$$y^3 \times y^5$$
 b $3x^2 \times 2x^5$

c
$$(4x^2)^3 \div 2x^5$$

d
$$4b^2 \times 3b^3 \times b^4$$

2 Expand and simplify if possible:

$$(x+3)(x-5)$$

b
$$(2x-7)(3x+1)$$

b
$$(2x-7)(3x+1)$$
 c $(2x+5)(3x-y+2)$

3 Expand and simplify if possible:

a
$$x(x+4)(x-1)$$

b
$$(x+2)(x-3)(x+7)$$

b
$$(x+2)(x-3)(x+7)$$
 c $(2x+3)(x-2)(3x-1)$

4 Expand the brackets:

a
$$3(5y + 4)$$

b
$$5x^2(3-5x+2x^2)$$

a
$$3(5y + 4)$$
 b $5x^2(3 - 5x + 2x^2)$ **c** $5x(2x + 3) - 2x(1 - 3x)$ **d** $3x^2(1 + 3x) - 2x(3x - 2)$

d
$$3x^2(1+3x) - 2x(3x-2)$$

					_	
5	Engtonica	+10000	expressions	000000	lataly:	
-	ractorise	tnese	expressions	comb	ieteiv	Ι:

a
$$3x^2 + 4x$$

b
$$4v^2 + 10v$$

a
$$3x^2 + 4x$$
 b $4y^2 + 10y$ **c** $x^2 + xy + xy^2$ **d** $8xy^2 + 10x^2y$

d
$$8xy^2 + 10x^2y$$

6 Factorise:

$$a x^2 + 3x + 2$$

b
$$3x^2 + 6x$$

a
$$x^2 + 3x + 2$$
 b $3x^2 + 6x$ **c** $x^2 - 2x - 35$

d
$$2x^2 - x - 3$$

e
$$5x^2 - 13x - 6$$

$$\mathbf{f} = 6 - 5x - x^2$$

Factorise:

a
$$2x^3 + 6x$$

b
$$x^3 - 36x$$

b
$$x^3 - 36x$$
 c $2x^3 + 7x^2 - 15x$

8 Simplify:

a
$$9x^3 \div 3x^{-3}$$

b
$$(4^{\frac{3}{2}})^{\frac{1}{3}}$$

c
$$3x^{-2} \times 2x^4$$
 d $3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$

d
$$3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$$

Evaluate, without using your calculator:

$$a \left(\frac{8}{27}\right)^{\frac{2}{3}}$$

b
$$\left(\frac{225}{289}\right)^{\frac{3}{2}}$$

10 Simplify, without using your calculator:

a
$$\frac{3}{\sqrt{63}}$$

b
$$\sqrt{20} + 2\sqrt{45} - \sqrt{80}$$

11 a Find the value of
$$35x^2 + 2x - 48$$
 when $x = 25$.

b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.

12 Expand and simplify if possible, without using your calculator:

a
$$\sqrt{2}(3+\sqrt{5})$$

b
$$(2-\sqrt{5})(5+\sqrt{3})$$
 c $(6-\sqrt{2})(4-\sqrt{7})$

c
$$(6-\sqrt{2})(4-\sqrt{7})$$

13 Rationalise the denominator and simplify:

a
$$\frac{1}{\sqrt{3}}$$

b
$$\frac{1}{\sqrt{2}-1}$$

c
$$\frac{3}{\sqrt{3}-2}$$

a
$$\frac{1}{\sqrt{3}}$$
 b $\frac{1}{\sqrt{2}-1}$ **c** $\frac{3}{\sqrt{3}-2}$ **d** $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$ **e** $\frac{1}{(2+\sqrt{3})^2}$ **f** $\frac{1}{(4-\sqrt{7})^2}$

e
$$\frac{1}{(2+\sqrt{3})^2}$$

$$f = \frac{1}{(4-\sqrt{7})^2}$$

14 Do not use your calculator for this question.

a Given that
$$x^3 - x^2 - 17x - 15 = (x + 3)(x^2 + bx + c)$$
, where b and c are constants, work out the values of b and c.

b Hence, fully factorise
$$x^3 - x^2 - 17x - 15$$
.

E 15 Given that
$$y = \frac{1}{64}x^3$$
, express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{3}}$$
 (1 mark)
b $4y^{-1}$ (1 mark)

E/P 16 Show that
$$\frac{5}{\sqrt{75} - \sqrt{50}}$$
 can be written in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers. (5 marks)

(2 marks) 17 Expand and simplify
$$(\sqrt{11} - 5)(5 - \sqrt{11})$$
, without using your calculator.

E 18 Factorise completely
$$x - 64x^3$$
. (3 marks)

E/P 19 Express
$$27^{2x+1}$$
 in the form 3^y , stating y in terms of x. (2 marks)

- **E/P** 20 Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{2}}$.

Give your answer in the form $a\sqrt{b}$, where a and b are integers.

(4 marks)

21 Do not use your calculator for this question.

A rectangle has a length of $(1 + \sqrt{3})$ cm and area of $\sqrt{12}$ cm².

Calculate the width of the rectangle in cm.

Express your answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.

22 Show that $\frac{(2-\sqrt{x})^2}{\sqrt{x}}$ can be written as $4x^{-\frac{1}{2}} - 4 + x^{\frac{1}{2}}$.

(2 marks)

(E/P) 23 Given that $243\sqrt{3} = 3^a$, find the value of a.

(3 marks)

E/P 24 Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$,

write down the value of a and the value of b.

(2 marks)

Challenge

- **a** Simplify $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b})$.
- **b** Hence show that $\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{24} + \sqrt{25}} = 4$

Summary of key points

1 You can use the laws of indices to simplify powers of the same base.

•
$$a^m \times a^n = a^{m+n}$$

•
$$a^m \div a^n = a^{m-n}$$

•
$$(ab)^n = a^n b^n$$

- 2 Factorising is the opposite of expanding brackets.
- 3 A quadratic expression has the form $ax^2 + bx + c$ where a, b and c are real numbers and $a \neq 0$.

4
$$x^2 - y^2 = (x + y)(x - y)$$

5 You can use the laws of indices with any rational power.

•
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

•
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

•
$$a^{-m} = \frac{1}{a^m}$$

•
$$a^0 = 1$$

6 You can manipulate surds using these rules:

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- 7 The rules to rationalise denominators are:
 - For fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a} .
 - For fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $(a-\sqrt{b})$.
 - For fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $(a+\sqrt{b})$.